Basic R tutorial

Data types and structures

Data Types
e A vector contains an indexed set of values that are all of the
same type:
— logical
— numeric
— complex
— character
e The numeric type can be further broken down into integer,

single, and double types (but this is only important when

making calls to foreign functions, eg. C or Fortran.)

Data Structures
vector - elements of the same type
factor - categorical
list - can contain objects of different types
matrix - table of numbers
data.frame - table of numbers and/or characters
environment - hashtable

function

Data Structures

e There is no need to declare the types of the variables.

> x <- data.frame(type=c(rep("case",2),rep("control",3)),
+ time=rnorm(5))

>y <= 10

> z <- "a string"

> class(z)

[1] "character"
> class(x)

[1] "data.frame"

Creating Vectors

There are two symbols that can be used for assignment: <- and =.

> v <- 123
[1] 123
> s = "a string"

[1] "a string"
> t <- TRUE
[1] TRUE

> letters

[1] Ilall ll'bll IICII lldll llell

llfll

llgll Ilhll llill IIJ' n llkll lllll Ilmll llnll lloll llpll

[17] |lql| llrll IISII lltll llull llvll IIWII IIXII lly-ll llzll

> length(letters)

[1] 26

Functions for Creating Vectors
e c - concatenate
e : - integer sequence, seq - general sequence
® rep - repetitive patterns

e vector - vector of given length with default value
> seq(1, 3)
[11 1 2 3
> 1:3
[1] 1 2 3
> rep(1:2, 3)
[1] 121212
> vector (mode="character", length=5)

[1] nmo oo nontnonn

Vectorized Arithmetic

e Most arithmetic operations in the R language are vectorized.
That means that the operation is applied element-wise.

> 1:3 + 10:12
[1] 11 13 15
e In cases where one operand is shorter than the other the short

operand is recycled, until it is the same length as the longer
operand.

> 1+ 1:5

[1] 2 3456

> paste(1:5, "A", sep="")
[1] "1A" QA" W3A" "4AM MBAN

e Many operations which need to have explicit loops in other
languages do not need them with R. Try to vectorize any code

you write.

Matrices and n-Dimensional Arrays
e Can be created using matrix and array.

e Are represented as a vector with a dimension attribute.

> x <- matrix(1:10, nrow=2)
> dim(x)

[1] 2 5

> X

[,11 [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

> as.vector(x)

[1] 1 2 3 4 5 6 7 8 9 10

Lists

e A list is an ordered set of elements that can be arbitrary R
objects (vectors, other lists, functions, ...). In contrast to
atomic vectors, which are homogeneous, lists and environments
can be heterogeneous.

> 1st = list(a=1:3, b = "ciao", c¢ = sqrt)
> 1st

$a
[1] 1 2 3

$b

[1] "ciao"

$c

function (x) .Primitive("sqrt")
> 1st$c(81)
[1] 9

10

Environments

e One difference between lists and environments is that there is
no concept of ordering in an environment. All objects are

stored and retrieved by namae.

> el = new.env()

> el[["a"]] <- 1:3

> assign("b", "ciao", el)
> 1s(el)

[1] nan ubu

e Access to large environment can be sped up by using hashing

(see the manual page of new.env).

e Names must match exactly.

11

Data Frames

Data frames are a special R structure used to hold a set of
spreadsheet like table. In a data.frame, the observations are

the rows and the covariates are the columns.

Data frames can be treated like matrices and be indexed with
two subscripts. The first subscript refers to the observation,

the second to the variable.

Columns of a data frames are vectors (i.e. elements have same

data type), but different columns can be vectors of different

types.

Data frames are really lists, and list subsetting can also be used

on them.

12

Data Frames (continued)

> df <- data.frame(type=rep(c("case", "control"), c(2, 3)),
+ time=rexp(5))
> df

type time
case 0.1766375
case 0.7737111
control 0.2121239
control 2.7640733
control 0.9474739

OO S W NN -

> df$time

[1] 0.1766375 0.7737111 0.2121239 2.7640733 0.9474739

13

Naming

The elements of a vector can (and often should) be given names.
Names can be specified

e at creation time

e later by using names, dimnames, rownames, colnames

> x <= c(a=0, b=2)
> X

ab
0 2

> names (x) <- c("Australia", "Brazil')

> X

Australia Brazil
0 2

14

Naming

> x <- matrix(c(4, 8, 5, 6, 4, 2, 1, 5, 7), nrow=3)
> dimnames (x) <- list(

+ year = c("2005", "2006", "2007"),

+ "mode of transport" = c("plane", "bus", "boat"))
> X

mode of transport

year plane bus boat

2005 4 6 1
2006 8 4 5
2007 5 2 7

15

Data types for microarrays
ExpressionSet - one channel data (package Biobase)
NChannelSet - multiple channels data (package Biobase)
AffyBatch - Affymetrix data (package affy)

beadLevelData and lumiBatch - Illumina data (package

beadarray and lumi respectively)

16

About AnnotatedDataFrame

e An AnnotatedDataFrame consists of a collection of samples and
the values of variables measured on those samples. There is

also a description of each variable measured.

e AnnotatedDataFrame coordinates a data.frame with its

metadata.

17

ExpressionSet and Cie. structure
assayData - expression values in identical sized matrices
phenoData - sample annotation in AnnotatedDataFrame
featureData - feature annotation in AnnotatedDataFrame

experimentData - description of the experiment as a MIAME

object
annotation - type of chip as a character

protocolData - scan dates as a character

18

ExpressionSet

> library("Biobase")
> data(sample.ExpressionSet)

> class(sample.ExpressionSet)

[1] "ExpressionSet"
attr(,"package")
[1] "Biobase"

> dim(sample.ExpressionSet)

Features ©Samples
500 26

> slotNames (sample.ExpressionSet)

[1] "experimentData" "assayData"
[4] "featureData" "annotation"
[7] ".__classVersion__"

19

"phenoData"

"protocolData"

ExpressionSet
> sample.ExpressionSet

ExpressionSet (storageMode: lockedEnvironment)
assayData: 500 features, 26 samples
element names: exprs, se.exprs
protocolData: none
phenoData
sampleNames: A B ... Z (26 total)
varLabels: sex type score
varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'

Annotation: hgu9bav2

20

Subsetting and assignments

21

Subsetting

One of the most powerful features of R is its ability to

manipulate subsets of vectors and arrays.
Subsetting is indicated by [,].

Note that [is actually a function (try get("[")). x[2, 3] is
equivalent to "["(x, 2, 3). Its behavior can be customized

for particular classes of objects.

The number of indices supplied to [must be either the

dimension of x or 1.

22

Subsetting with Positive Indices
e A subscript consisting of a vector of positive integer values is
taken to indicate a set of indices to be extracted.

> x <-1:10
> x[2]

[1] 2
> x[1:3]
[1] 1 2 3
e A subscript which is larger than the length of the vector being
subsetted produces an NA in the returned value.
> x[9:11]
[1] 9 10 NA

23

Subsetting with Positive Indices
e Subscripts which are zero are ignored and produce no
corresponding values in the result.
> x[0:1]
[1] 1
> x[c(0, 0, 0)]

integer (0)

e Subscripts which are NA produce an NA in the result.
> x[c(10, 2, NA)]
[1] 10 2 NA

24

Assignments with Positive Indices

e Subset expressions can appear on the left side of an
assignment. In this case the given subset is assigned the values
on the right (recycling the values if necessary).

> x[2] <- 200
> x[8:10] <- 10
> X

[1] 1200 3 4 5 6 7 10 10 10

e If a zero or NA occurs as a subscript in this situation, it is

ignored.

25

Subsetting with Negative Indexes

A subscript consisting of a vector of negative integer values is
taken to indicate the indices which are not to be extracted.

> x[-(1:3)]
[1] 4 5 6 7 10 10 10

Subscripts which are zero are ignored and produce no

corresponding values in the result.
NA subscripts are not allowed.

Positive and negative subscripts cannot be mixed.

26

Subsetting by Logical Predicates
e Vector subsets can also be specified by a logical vector of TRUES
and FALSEs.
>x =1:10
>x > 5
[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
> x[x > 5]

[1] 6 7 8 9 10

e NA values used as logical subscripts produce NA values in the
output.

e The subscript vector can be shorter than the vector being
subsetted. The subscripts are recycled in this case.

e The subscript vector can be longer than the vector being
subsetted. Values selected beyond the end of the vector
produce NAs.

27

Subsetting by Name
e If a vector has named elements, it is possible to extract subsets
by specifying the names of the desired elements.

> x <- c(a=1, b=2, c=3)

> X[C(”C”, Hall, ”fOO”)J

C a <NA>
3 1 NA

e If several elements have the same name, only the first of them

will be returned.

e Specifying a non-existent name produces an NA in the result.

28

Subsetting matrices

when subsetting a matrix, missing subscripts are treated as if
all elements are named; so x[1,] corresponds to the first row
and x[,3] to the third column.

for arrays, the treatment is similar, for example y[,1,].

these can also be used for assignment, x[1,]1=20

29

Subsetting Arrays

e Rectangular subsets of arrays obey similar rules to those which
apply to vectors.

e One point to note is that arrays can also be treated as vectors.
This can be quite useful.

> x = matrix(1:9, ncol=3)
> x[x> 6]

[1] 7 8 9
> x[x>6]1 =0
> X

[,1] [,2] [,3]

[1,] 1 4 0
[2,] 2 5 0
[3,] 3 6 0

30

Subsetting and Lists

Lists are useful as containers for grouping related thing

together (many R functions return lists as their values).

Because lists are a recursive structure it is useful to have two

ways of extracting subsets.

The [] form of subsetting produces a sub-list of the list being
subsetted.

The [[1] form of subsetting can be used to extract a single

element from a list.

31

List Subsetting Examples

e Using the [] operator to extract a sublist.

> 1st[1]
$a
[1] 1 2 3

e Using the [[1] operator to extract a list element.

> 1st[[1]]
[1] 1 2 3

e As with vectors, indexing using logical expressions and names

is also possible.

32

List Subsetting by Name

e The dollar operator provides a short-hand way of accessing list
elements by name. This operator is different from all other
operators in R, it does not evaluate its second operand (the
string).

> 1st$a
[1] 1 2 3
> 1st[["a"]]
[11 1 23

e For § partial matching is used, for [[it is not by default, but

can be turned on.

33

Accessing Elements in an Environment

e Elements in environments can be accessed through, get, assign,

mget.

e You can also use the dollar operator and the [[]] operator,
with character arguments only. No partial matching is done.
> el$a
[1] 1 2 3
> el[["p"]]

[1] "ciao"

34

Assigning values in Lists and Environments
e [tems in lists and environments can be (re)placed in much the
same way as items in vectors are replaced.

> 1st[[1]] = 1ist(2,3)
> 1st[[1]]

[[1]]
[1] 2

[[2]]
[1] 3

> el$b = 1:10
> el$b

[1] 1 2 3 4 5 6 7 8 9 10

35

Subsetting ExpressionSet
> sample.ExpressionSet[1:2, 2:5]

ExpressionSet (storageMode: lockedEnvironment)
assayData: 2 features, 4 samples
element names: exprs, se.exprs
protocolData: none
phenoData
sampleNames: B C D E
varLabels: sex type score
varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'

Annotation: hgu9bav2

36

Packages

37

Packages

In R the primary mechanism for distributing software is via
packages

CRAN is the major repository for packages.

You can either download packages manually or use
install.packages or update.packages to install and update
packages.

In addition, on Windows and other GUIs, there are menu items
that facilitate package downloading and updating.

It is important that you use the R package installation
facilities. You cannot simply unpack the archive in some

directory and expect it to work.

38

Packages - Bioconductor

Bioconductor packages are hosted in CRAN-style repositories

and are accessible using install.packages.

The most reliable way to install Bioconductor packages (and
their dependencies) is to use biocLite.

Bioconductor has both a release branch and a development
branch. Each Bioconductor release is compatible with its
contemporary R release.

Bioconductor packages have vignettes.

39

Useful Functions

40

Getting Help

There are a number of ways of getting help:
e help.start and the HTML help button in the Windows GUI
e help and 7: help("data.frame")
® help.search, apropos
® RSiteSearch (requires internet connection)
e Online manuals

e Mailing lists

41

Get information about object
class
length - length of vectors or factors
dim - dimensions of an object

head and tail - first or last parts of an object

42

Reading/Writing files

read.table - creates a data.frame from a table format file
write.table - writes a table format file from a data.frame

save - writes an external representation of R objects to a

specified file
load - reload datasets written with the function ’save’

read.AnnotatedDataFrame - creates a AnnotatedDataFrame from

a table format file

43

How to plot data

e Simple plot

> x <- ¢(1,3,6,9,12)
>y <= ¢(1,2,7,8,4)
> plot(x,y)

e Customization

> plot(x,y, main='Title here', col='red', pch=15)

e Barplots
> barplot(y)

44

Control-Flow

R has a standard set of control flow functions:
e Looping: for, while and repeat.

e Conditional evaluation: if and switch.

45

Two Useful String Functions
1. Concatenate strings: paste

2. Search strings: grep

46

Example: paste

> s <- c("apple", "banana", "lychee")
> paste(s, "X", sep="_")

[1] "apple_X" "banana_X" "lychee_X"
> paste(s, collapse=", ")

[1] "apple, banana, lychee"

47

Example: grep

> library ("ALL")
> data(ALL)
> class(ALL$mol.biol)

[1] "factor"

> negldx <- grep("NEG", ALL$mol.biol)
> negldx[1:10]

[1] 2 5 6 7 8 9 12 14 16 21

48

The apply Family

e A natural programming construct in R is to apply the same
function to elements of a list, of a vector, rows of a matrix, or

elements of an environment.

e The members of this family of functions are different with
regard to the data structures they work on and how the

answers are dealt with.

e Some examples, apply, sapply, lapply, mapply, vapply, eapply.

49

apply
e apply applies a function over the margins of an array.

e For example,
> apply(x, 2, mean)
computes the column means of a matrix x, while
> apply(x, 1, median)

computes the row medians.

50

apply
apply is usually not faster than a for loop. But it is more elegant.

> a=matrix(runif(le6), ncol=10)

> system.time ({
+ s1 = apply(a, 1, sum)
+ })

user system elapsed
0.563 0.004 0.566

system.time ({

s2 = numeric(nrow(a))

>

+

+ for(i in 1:nrow(a))
+ s2[i] = sum(ali,])
+

+)

user system elapsed
0.287 0.000 0.287

See also: rowSums and colSums.

51

Writing Functions

52

Writing Functions

e Writing R functions provides a means of adding new
functionality to the language.

e Functions that a user writes have the same status as those
which are provided with R.

e Reading the functions provided with the R system is a good

way to learn how to write functions.

53

A Simple Function

e Here is a function that computes the square of its argument.

> square = function(x) x*x
> square(10)

[1] 100

e Because the function body is vectorized, so is this new function.
> square(1:4)
[11] 1 4 9 16

54

Composition of Functions

e Once a function is defined, it is possible to call it from other
functions.

> sumsq = function(x) sum(square(x))
> sumsq(1:10)

[1] 385

55

Returning Values

Any single R object can be returned as the value of a function;

including a function.

If you want to return more than one object, you should put
them in a list (usually with names), or an S4 object, and return
that.

The value returned by a function is either the value of the last

statement executed, or the value of an explicit call to return.

return takes a single argument, and can be called from any

where in a function.

56

Control of Evaluation

In some cases you want to evaluate a function that may fail,
but you do not want to get stuck with an error.

In these cases the function try can be used.

try(expr) will either return the value of the expression expr, or
an object of class try-error

tryCatch provides a more configurable mechanism for condition
handling and error recovery.

57

